Variation of risk - traducción al árabe
Diclib.com
Diccionario ChatGPT
Ingrese una palabra o frase en cualquier idioma 👆
Idioma:     

Traducción y análisis de palabras por inteligencia artificial ChatGPT

En esta página puede obtener un análisis detallado de una palabra o frase, producido utilizando la mejor tecnología de inteligencia artificial hasta la fecha:

  • cómo se usa la palabra
  • frecuencia de uso
  • se utiliza con más frecuencia en el habla oral o escrita
  • opciones de traducción
  • ejemplos de uso (varias frases con traducción)
  • etimología

Variation of risk - traducción al árabe

PROCEDURE FOR SOLVING DIFFERENTIAL EQUATIONS
Method of variation of the parameter; Variational methods (physics); Variation of parameter; Variation of constants; Variation of Parameters; Method of variation of parameters (differential equation); Method of variation of parameters; Variation of parameters (differential equations)

Variation of risk      
تغير الخطر، تغبر درجة الخطر
Varying         
WIKIMEDIA DISAMBIGUATION PAGE
Variations; Varied; Varying; Variation (disambiguation); Viccitude; Variations (album); Variation (combinatorics); Variations (Combinatorics); Variation (Combinatorics)
متغير، متفاوت
Variation         
WIKIMEDIA DISAMBIGUATION PAGE
Variations; Varied; Varying; Variation (disambiguation); Viccitude; Variations (album); Variation (combinatorics); Variations (Combinatorics); Variation (Combinatorics)
تغير، تردد، تطور، تباين

Definición

variation
¦ noun
1. a change or slight difference in condition, amount, or level.
(also magnetic variation) the angular difference between true north and magnetic north at a particular place.
2. a different or distinct form or version.
Music a new but still recognizable version of a theme.
Ballet a solo dance as part of a performance.
Derivatives
variational adjective

Wikipedia

Variation of parameters

In mathematics, variation of parameters, also known as variation of constants, is a general method to solve inhomogeneous linear ordinary differential equations.

For first-order inhomogeneous linear differential equations it is usually possible to find solutions via integrating factors or undetermined coefficients with considerably less effort, although those methods leverage heuristics that involve guessing and do not work for all inhomogeneous linear differential equations.

Variation of parameters extends to linear partial differential equations as well, specifically to inhomogeneous problems for linear evolution equations like the heat equation, wave equation, and vibrating plate equation. In this setting, the method is more often known as Duhamel's principle, named after Jean-Marie Duhamel (1797–1872) who first applied the method to solve the inhomogeneous heat equation. Sometimes variation of parameters itself is called Duhamel's principle and vice versa.